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The Reflecting Beam Waveguide

J. E. DEGENTFORD, MEMBER, 1IEEE, M. D. SIRKIS, MEMBER, IEEE, AND
W. H. STEIER, MEMBER, IEEE

Summary—In this paper a type of beam waveguide which uses
appropriately shaped metal reflectors instead of dielectric lenses as
the phase correcting devices is described. A theory has been de-
veloped which, subject to certain restrictions, describes the modes
of this type of beam waveguide and predicts a loss of the order of
of 0.01 db per itzration.

A reflecting beam waveguide comprising eight aluminum reflec-
tors has been investigated at a wavelength of 4 millimeters. The
measured loss per iteration is approximately 0.015 db which is in
good agreement with the theoretical value. The cross-sectional elec-
tric field distribution has also been measured and found to be in sat-
isfactory agreement with the theory.

It is shown that the reflecting beam waveguide is a practical
system for the transmission of power at submillimeter wavelengths.
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INTRODUCTION

N RECENT YEARS, the beam waveguide analyzed

]i[ by Goubau and his co-workers [1], [2] has been
considered as a possible transmission system for
wavelengths from the low millimeter to the optical re-
gion of the spectrum. Basically, the beam waveguide
consists of dielectric lenses or phase correctors, each
having a focal length f, which are separated by a dis-
tance a=2f as shown in Fig. 1. At each lens the phase
distribution of a signal propagating along the beam
waveguide is corrected to compensate for diffraction
effects due to the finite aperture of the beam waveguide.
The confocal spacing keeps these diffraction losses at
a minimum for a given lens diameter. The losses on this
type of waveguide are due to the diffraction losses cited
above, to absorption losses within the lenses, and to
reflection and scatter losses at the surfaces of the lenses.
For reasonable lens diameters and spacings the dif-
fraction losses can be kept quite small in the millimeter
and submillimeter region of the spectrum. However, it is
difficult to obtain a dielectric phase corrector for which
both the absorption and reflection losses are small at
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Fig. 1—Dielectric lens beam waveguide.
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Fig. 2—Reflecting transmission systems,

these wavelengths. These losses associated with the di-
electric lenses may be avoided if metal reflectors are
used to guide the wave beam.

Earlier work by Boyd and Gordon [3] and Fox and
Li [4] on confocal resonators and maser interferometers
suggests that such a possibility exists. Damon and
Chang [5] have proposed such a reflecting beam wave-
guide. Their transmission line, based on the principles
of geometrical optics, comprised a colinear series of
spheroidal reflectors with common foci as shown in Fig.
2(a). However, Boyd and Kogelnik [6] have recently
shown that this arrangement (which corresponds to a
spacing a =4f for a lens type beam waveguide) has very
high diffraction losses and thus is unsatisfactory for a
transmission line of any appreciable length.

In this paper a reflecting beam waveguide, shown
schematically in Fig. 2(b), in which elliptic paraboloidal
reflectors are used as the phase correcting elements is
described. An analysis is presented which, subject to
certain restrictions, describes the modes on this type of
transmission line and predicts a fractional loss per itera-
tion of the order of 0.01 db. Experimental data for both
the field distribution for lowest order mode transmission
and for the losses on the reflecting beam waveguide are
in substantial agreement with the theory.

ANALYSIS

In Fig. 2(b), a cross-sectional view of the reflecting
beam waveguide in which the reflectors are represented
by their traces in the plane of the figure is shown. The
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orientation of the reflectors may be described by any
two of the parameters a, b, ¢, and ¢.

Fig. 3 is a three-dimensional view of a reflector and
the elliptic paraboloid of which it is a part. The length
of the reflector (measured in the direction of the ¥
axis) is 2sa/b, and its width (measured in the direction
of the x; axis) is 2s. The equation of the reflector surface
is chosen to be

X2 by12
2y = ——

2b 2a?

M

for reasons which will become apparent as the analysis
progresses. It should be pointed out that only an ap-
proximate analysis is presented in this paper. A slightly
different formulation of the problem which is not quite
as accurate as the analysis presented here indicates that
the surface

b3y12

2a*

bxﬁ
Z1 = ——
2a?

is also consistent with the approximations made in this
paper [7]. The experimental performance of both types
of reflector is comparable, which is not too surprising in
view of the work of Boyd and Kogelnik on generalized
confocal resonators [6].

From both of the above equations it follows that the
reflector shape also depends on the parameters ¢ and b,
and in the limit when a=25; 7.e., when ¢ =0, the reflec-
tors become paraboloids of revolution and the reflecting
beam waveguide folds into a confocal resonator.! Based
upon this observation, it seemed reasonable to suppose
that the analysis used by Boyd and Gordon [3] to de-
scribe the confocal resonator might be adapted to de-
scribe the reflecting beam waveguide as well. This sup-
position was in fact valid, and the analysis developed
below for the reflecting beam waveguide follows closely
the work of Boyd and Gordon [3]. Only the surface
given by (1) will be considered in detail here.

For the analysis one considers a system comprising
two reflectors from the waveguide as shown schemat-
ically in Fig. 4. It is assumed that the reflector dimen-
sions are small compared to the spacing ¢ and that the
reflector dimensions are large compared to a wave-
length. It is also assumed that the electric field on the
surface P/, E,/ (x/, &), is linearly polarized in the x
direction. A scalar formulation of Huygens' principle
may then be used to determine the field at the surface
of the right-hand reflector, E,(x, £).

k(cos 6 + cos ¥)
Ex(x, E) _ ff 1k(cos cos
st

e ES (), E)dS (2)
4o

L As noted by Boyd and Gordon [3] in discussing the confocal
resonator, one cannot distinguish between parabolic and spherical
reflectors if the reflector dimensions are sufficiently small. Thus only
the radii of curvature in the x; and v directions are the important
parameters.
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Fig. 4—Geometry of the reflecting beam waveguide.

where

p=distance between P’ and P
= [(x—a)+(E—E +0)2+(z—2)2 ]!

# =angle between the normal to the reflector surface
at P’ and the line P'P

Y =angle between the normal to the reflector surface
at P’ and the line from P’ to the source illuminat-
ing S’

A=27/k=wavelength.

In this far field approximation, 6 and ¥ are considered

to be essentially constant and define the ray trajectory
which results when the phase front across the aperture
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is very nearly planar, though not necessarily parallel to
the aperture.

One might note that the integral equation usually
associated with Huygens' principle is

k(1 + 0
E.(x, &) = ff 1(4—:052 e R (x, £)dS'.
. Ly

This equation is valid, however, only when the sur-
face S’ is an equiphase surface. For the more general
situation when S’ is not an equiphase surface, (2) must
be used [8] In this case, however, because the reflector
curvature is small and the reflector dimensions are
small in comparison to the spacing a, it follows that
0=¢. Furthermore, because the source producing the
field distribution on the left-hand reflector (S') is just
another reflector of the waveguide, Yy =2¢. Consequently,
(2) reduces to

reo[

The equations for the reflector surfaces in the co-
ordinate system of Fig. 4 can be obtained from (1)
which represents the reflector surface in the coordinate
system of Fig. 3 by a straightforward coordinate trans-
formation. The resulting equation for the reflector on
the right is

7
RSP p(, £)aS. (3)

27p

b x2 b
B e — —— 2
2 26 2a?
where
£ = c

Similarly, for the reflector on the left,

b x'?
7 = ——-

+b£’°
2 2

2a?

where
P=y
2
From these equations p, the distance from a point

P'(x', &) on the left reflector to a point P(x, &) on the
right reflector, can be shown to be

p= =+ g o

1/2

bbb @) ||
+l: __Q_b(x v 2a?

With the aid of the binomial theorem, it follows that
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¢ , wx’ b2

it S -Tmwr L@
- a a a

The higher order terms in (4) make a negligible con-

tribution to the phase term € % of (3) provided

s? ab - )
ax « 2¢s[1+(a/b)?]

To facilitate solution of the integral equation (3) an
assumption regarding the functional form of E./(x’, ) is
now made. Because of the similarity between this sys-
tem and the confocal resonator, one is led to assume a
field distribution which is similar to that of the confocal
resonator except for the addition of a phase term due to
the fact that the incident beam of radiation impinges
upon the reflectors at an angle of incidence approxi-
mately equal to ¢. If E,’(«, £) is assumed to be of the
form

Er’ (x,3 El) = Eofm(x')gn(g’) e“kCE’ /a’

where E, is a constant and f,.(x’) and g,(#') are functions
of ’ only and £ only, respectively, then, (3) becomes

E (x E) = ff M—OS(;[) €~ika0f (’C’)g (gl)e_ikcgl/adsl (6)
LAYy , 27rp AN n .

Because the apertures are assumed to be small compared
to the reflector spacing a, p may be replaced by a except
in the phase factor of (6). The differential area 4.5 is
given by

aS' = dx'd¥’

because the curvature of the reflectors is small. Substi-
tution of the values for p, ¢ and dS’ into (6) yields
tkb

as/bf s
—as/b ¥ —¢ 2wa®

“Eofm(") gn(§)da dE . ()

Ey(x, 8) = e iklat (c/a)E— (e’ [a)— (b2 [a® )]

The eigenfunctions or normal modes of the reflecting
beam waveguide are determined by the requirement
that E.(x, £) be the same as E,’(x', {') except for a multi-
plicative constant; i.e., it is required that

Ex<x7 g) = UmGnEofm(x)gn(s) e tket]a

where o, and ¢, are constants. Substitution of this ex-
pression in (7) yields the following integral equation:

kb as/b 3
—iha f f €k /8) [+ (b /@) 8]
2wa? —as/bVY —s

Sn(a)gn()d'dE’. (8)

It is convenient to introduce a transformation of vari-
ables at this point. Let

Tm0nfm () €n(E) =
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d = s%k/a
X = xv/Ejd = — /3
s
b E b _
f=t- VEHa=— — i
a s a

Gn(§) = g.(8).

Then (8) becomes

P —ika vd
Fu(X)Ga(t) = — Fu(X)eXX'dX'
TOmOTnvY —Jd
va
| ewyerar (9
-~

which may be separated into the two identical integral
equations

1 va
Fa(X) = mf_vﬁ Fo(X"yeXX'dX’ (10)
and
1 vd -
G.(9) = v ad Gn(§) et dy’ (11)
where &, and @, are constants defined by
Qi = gpo. (12)

Eqgs. (10) and (11) are the same as those obtained by
Boyd and Gordon [3] in their analysis of the confocal
resonator, and it is for this reason that the reflector sur-
face given by (1) was chosen. It follows, therefore, that
the modes of the reflecting beam waveguide are the
same as those of the confocal resonator except for the
phase shift along the surface of the reflectors. A com-
plete discussion of the modes is given by Boyd and Gor-
don. In the following discussion only the lowest order
mode will be considered because it has the lowest loss
and is most suitable for a transmission system. The
field distribution for the lowest order mode on the re-
flector is given by

E = iE, = iEge G120 P+ ah)] —Ghoja) (13)

b
H=<—j-ik) Veoluo E (14)
a a
where the geometrical configuration is shown in Fig. 4,
i, j, and k are unit vectors in the x, v, and z directions,
respectively; e and po are the permittivity and perme-
ability of free space, respectively; and H is the magnetic
field intensity.
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The electric field distribution in the plane mid-way
between the reflectors [y= —(b/c)z in Fig. 4] may be
found by inserting the expression given in (13) for the
field distribution on the reflector surface into (3), where

p is now the distance from the point P’'(x', £) on the.

reflector surface to the point Plx, y, 2= —(¢/b)y]. In a
straightforward way [3] one obtains

Eu(, ) =2 A/2 Epei (/0= kal2)) = (/o) (@ 075% - (15)
If gisa coordinate measured in the mid-plane y= —(¢/b)z

perpendicular to the x axis as shown in Fig. 4, then
g={(a/b)y. In terms of the variable ¢, (15) becomes

b _
E, (x’ — g) o /2 Eyel (niH—ka/) ke GHa’y - (16)
a

One may conclude that the mid-plane is an equiphase
surface and that the field amplitude is given by a Gaus-
sian function of the distance from the beam axis; s.e.,
the line joining the reflector centers.

From (9)-(12) it follows that the power lost per re-
flection due to diffraction losses P.p is given by

Pip = {1 — | Q.22 Pr (17
where Py is the transmitted power. The dependence of
the diffraction losses for the lowest order mode on the
reflector size is shown in Fig. 5 in which Prp/Pr is
plotted as a function of the parameter s2/(a\). To keep
the diffraction losses low, the parameter s2/(a\) should
be at least of the order of 0.75.

In addition to diffraction losses there are also conduc-
tion losses due to the finite conductivity of the metal
reflectors. These losses are a function of the field polar-
ization and the reflector spacing as well. The power lost
per iteration (or reflection) due to conduction losses P Lw

is given by
ff | H,|2dS
ReffExH*-dS

R, = /muf/c

PLW/PT = -LRS

(18)

where

the surface resistance, is a function of the permeability
of the surface u, the frequency f, and the conductivity o.
The integration extends over the reflector surface and
H, is the tangential component of the magnetic field
intensity in the incident wave.

If the electric field is in the x direction as shown in
Fig. 4, (18) becomes
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dxdy

il
\/M0/60<%> f f |H

= 4(b/a) V'ref/o.

If the magnetic field is in the x direction, the fractional

conduction loss is given by
f f IH [dedju

() o

4a/b)v/waf/o.

Examination of these results shows that the former
polarization is preferable because b <a.

b
—H
a

Prw/Pr = 4R,

*dady

Prw/Pr = 4R,

i

DESIGN AND FABRICATION OF A REFLECTING
BEaM WAVEGUIDE

In designing a low-loss reflecting beam waveguide,
several factors must be considered. First, the reflectors
must be large enough to keep diffraction losses low and
yet small enough so that any higher-order modes gener-
ated by either the launching horn or imperfections or
obstacles along the waveguide are rapidly attenuated.
Both of these conditions are satisfied if 0.8 <s?/(al) <1.
Second, the analysis imposes the restriction

a
/) < 2cs[1 + (a/b)?]

In practice, this restriction can be relaxed somewhat for
the lower-order modes. In fact, for the test set-up de-
scribed below,

s2/(a\) =2 ab/(24cs)

due to space limitations in the laboratory, and the ex-
perimental results are still in essential agreement with
the theory. Third, the electric field should be polarized
perpendicular to the plane of incidence to minimize con-
duction losses.

With these requirements in mind, an experimental
reflecting beam waveguide was built having the follow-
ing parameters:

a = 283 cm

b =20 cm

¢=20cm

¢ = 45°

s =293 cm
= 73.2 Gc.
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Fig. 5—Diffraction loss per iteration for lowest order mode as a function of s?/(aX).

Because the shape of the reflectors prevents them
from being made on a conventional lathe or milling ma-
chine, a technique was developed [9] using a vacuum to
form a stretched aluminum membrane into the proper
shape. It should be pointed out that in the analysis the
reflectors were assumed to be rectangular, whereas an
elliptical boundary is necessary for proper curvature of
the aluminum membrane. For the experimental line, the
calculated rectangular reflector dimensions are 5.86 cm
by 8.29 cm. The reflectors were made large enough to
enclose the calculated rectangle as shown in Fig. 6. This
change in reflector shape does not affect the field dis-

tribution for the lowest order mode but does tend to
lower the diffraction losses slightly.

A completed elliptic paraboloidal reflector is shown
in Fig. 7, and the completed experimental reflecting
beam waveguide is shown in Fig. 8.

ExXPERIMENTAL MEASUREMENTS

The cross-sectional field distribution measurements
were made using a small 4-mm horn connected to a
bolometer to probe the fields. The horn and bolometer
were mounted on a carriage from a jeweler’s lathe so
the position of the horn could be accurately measured.
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ELLIPTICAL REFLECTOR SHAPE
NECESSARY FOR PROPER CURVATURE
OF FOIL.

5.86 ¢cm.

CALCULATED REFLECTOR SHAPE
MAJOR AXIS LENGTH = 11.72 cm.

MINOR AXiS LENGTH = 8.29 c¢m.

Fig. 6—Theoretical and experimental reflector shape.

Fig. 7—Elliptic paraboloidal reflector.

Fig. 8—Laboratory model of the reflecting beam waveguide.

The field patterns were measured in the mid-plane be-
tween two reflectors.

Fig. 9 shows a comparison between theoretical and
experimental cross-sectional field distributions. In the
plane halfway between the first and second reflectors
(— O~ curve), the field distribution shows the presence
of higher order modes. These modes arise because the
electric field distribution in the launching horn differs
from the lowest order mode distribution of the reflecting
beam waveguide. These higher order modes attenuate
rapidly, however, and in the mid-plane between the
seventh and eighth reflectors (—A— curve), the field
distribution is very close to the theoretical value.

In order to investigate the losses of the reflecting
beam waveguide, a resonator consisting of 4% sections
of the waveguide was set up as shown in Fig. 10. To
couple power into the resonator, a flat grating coupler
[10] was placed at a distance a/2 in front of the first
reflector. To terminate the resonator, a spherical reflec-
tor was placed at a distance 2,=a from the last wave-
guide reflector. An alternate method of terminating the
resonator would have been to place a flat reflector at a
distance z,=a/2 behind the last waveguide reflector.
For this resonator «, the fractional loss per iteration,
is given approximately by

2ma

Qud

~

(19)

where

a =distance between reflectors as shown in Fig. 10
Q. =1unloaded Q of the resonator

A=wavelength.

For the case when the electric field is polarized normal
to the plane of incidence in Fig. 10, the general shape
of the resonance curve is shown in Fig. 11(a). To cali-
brate the horizontal scale of the oscilloscope trace in
Mec/cm the frequency meter pip was first placed 1 cm to
the left of the resonance and then 1 ¢m to the right of
the resonance as shown in Figs. 11(b) and (c¢). The
difference in readings on the frequency meter corre-
sponded to a scale calibration of 9.8 Mc/cm. The oscil-
loscope pattern was then expanded horizontally by a
factor of five to yield the trace shown in Fig. 11(d).
From this trace the half power difference frequency was
determined to be approximately 1 Mc. This gives a
value of 73,200 for Q;, the loaded quality factor. Q. is
related to Qr by the relation

where T, is the reflection coefficient of the resonator at
resonance. From the oscilloscope trace in Fig. 11(a),
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Fig. 9—Cross-sectional electric field distributions.
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T';, can be determined to be 4/1/30 or 0.182 giving a
value for Q, of

0. = 20.(0.88) = 129,000.

Substitution of this value of Q, into (19) yields a value
for a of 0.015 db per iteration which is in satisfactory
agreement with the theoretical value of approximately
0.013 db per iteration.

If the launching hern is rotated 90° about its axis
so that the electric field lies in the plane of incidence,
the theory predicts that the conduction losses double
and the over-all losses increase by approximately 25 per
cent. Experimentally, « is found to increase by approxi-
mately 32 per cent to 0.02 db per iteration.

Work is now underway to develop components com-
patible with the reflecting beam waveguide. Most of the
components can be modeled after their optical counter-
parts. For example, bends can be made from reflecting
sheets, attenuators from coupled prisms, and an im-
pedance measurement device can be made from a
Michelson interferometer. Frequency measurements
can be made with a confocal resonator coupled to the
lineby a grating coupler.

CONCLUSIONS

The reflecting beam waveguide is a very practical
transmission system for millimeter and submillimeter
waves. The physical dimensions of the reflecting beam
waveguide are large compared to the wavelength,
whereas a conventional waveguide system has transverse
dimensions which are of the order of one-half wave-
length. In addition the power handling capability is
higher and the attenuation lower for the reflecting beam
waveguide than for conventional waveguides.

Although the lens beam waveguide has similar ad-
vantages with respect to a conventional waveguide, two
problems must be considered if one wishes to use a lens
beam waveguide at submillimeter wavelengths. One of
these is associated with a restriction on the parameter
s?/(aN). To minimize the losses and to insure that
higher-order modes attenuate rapidly, the value of
s2/(a\) should be approximately 0.8, the exact value
depending on the properties of the lens material. Con-
sequently, at shorter wavelengths the lenses become
extremely small and difficult to fabricate for reasonable
values of @, the distance between the lenses. One solu-
tion to this problem is to make oversize lenses and to use
irises to restrict the aperture for the purpose of sup-
pressing higher-order modes. Unfortunately, because
the oversize lenses are thicker than lenses of the correct
size, the dielectric losses for such a waveguide are greater
than for a waveguide with lenses of the correct size.
For the reflecting system, the restriction on s2/(a\) is
essentially the same; 7.e., s2/(aX)=20.8. In this case,
however, the technique of using oversize reflectors in
conjunction with irises to restrict the aperture may be
used with no increase in the losses as compared to a
waveguide using reflectors of the correct size.
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A second difficulty with the lens beam waveguide
arises from the losses due to reflection at the lens sur-
faces and to the nonzero loss tangent of the dielectric
material from which the lenses are fabricated. For pres-
ently available materials these losses become excessively
large for wavelengths less than a few millimeters. For
the reflecting beam waveguide, the losses due to the cor-
recting elements arise only from the finite conductivity
of the reflecting surfaces. Even at wavelengths as short
as 0.1 millimeter, the calculated conduction losses are
only approximately 0.02 db per iteration for aluminum
reflectors, making the reflecting beam waveguide usable
well into the submillimeter wave region.
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Analysis of a Differential Phase Shifter

DOYLE A. ELLERBRUCH, MEMBER, IEEE

Summary—This paper presents the theory and analysis of a
ganged pair of “line stretcher” microwave phase shifters. The error
analysis shows that some of the errors inherent in a single phase
shifter of this type can be reduced through the use of a differential
system; however, the magnitudes of other errors may more than
offset the reduction. Graphical data are included to facilitate the
rapid determination of the limit of error for any specified angle
measurement.

INTRODUCTION

N ERROR analysis by Schafer and Beatty of
A the reflectometer type phase shifter proposed by
Magid leads to the conclusion that the accuracy
of the device is limited by errors in the determination of
the guide wavelength and position of the sliding short.
The following paper presents an analysis of a phase
shifter consisting of two ganged shifters of the Magid
type in tandem; that is, a differential phase shifter, as
proposed by Beatty.
A desirable characteristic of the differential phase
shifter when compared to the Magid type is a reduction
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of the error that is introduced by short circuit displace-
ment measurement tolerances. This paper contains
graphical data for WR-90 and WR-112 waveguides so
it can readily be determined which type of phase shifter
has the least limit of error for a given measurement, A
comparison example will be included.

The sources of error which are considered include
those introduced by reflectometer tuning imperfections,
waveguide width tolerances, short circuit displacement
measurement and short circuit misalignment errors.
Only these errors are considered because they limit the
over-all accuracy that can be attained with either phase
shifter.

THEORY

Magid® proposed a phase shifter consisting of a direc-
tional coupler, matching transformers and precision
waveguide section terminated in a sliding short circuit,
as shown in Fig. 1. Assuming that I's,=0 and Sy =0, the
change of phase of the emerging signal &3 is exactly equal

! M. Magid, “Precision microwave phase shift measurements,”
IRE TraNns., ON INSTRUMENTATION, vol. [-7, pp. 321-331; Decem-
ber, 1938,



